R20

Code No: **R20A0026**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, April 2025 Discrete Mathematics

(CSE, IT, CSE-CS, CSE-AIML, CSE-DS, B.Tech-AIDS & B.Tech-AIML)

|--|

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

1	4	SECTION-I	BCLL	CO(s)	Marks
1	A	Construct the truth table for the formula ($P \rightarrow Q$) \land ($Q \rightarrow R$) and determine if it is a tautology.	L2	CO-I	[7M]
	В	Explain in detail about the Connectives with Examples? OR	L1	CO-I	[7M]
2	A	Prove by contradiction: If n^2 is even, then n is even.	L3	CO-I	[7M]
	В	Derive $P \rightarrow \neg S$ from the premises $P \rightarrow (Q \lor R), Q \rightarrow \neg P$, S $\rightarrow \neg R$ and P.	L2	CO-I	[7M]
		<u>SECTION-II</u>			
3	A	Prove that every lattice is a poset, but not every poset is a lattice, using an example.	L2	CO-II	[7M]
	B	Explain the concept of recursive functions with one example.	L2	CO-II	[7M]
		How are they different from ordinary functions? OR			
4	A	Determine whether the relation $R = \{ (a, b) a \text{ divides } b \}$ on the set Z^+ is a partial order.	L3	CO-II	[7M]
	В	Let $A=\{1,2,3,4,6,12\}$ on A define the relation R by aRb if and only if a divides b. Construct the Hasse Diagram for this relation.	L2	CO-II	[7 M]
		<u>SECTION-III</u>			
5	А	Let G be a set of all non-zero real numbers and $a*b=(ab)/2$	L1	CO-III	[7M]
	В	Show that $\langle G, * \rangle$ is an abelian group. Show that $\langle G, \times_5 \rangle$ is a Group, where G= {1, 2, 3, 4}	L1	CO-III	[7M]
	D		LI	C0-III	[/1•1]
		OR			
6		Discuss the Inclusion-Exclusion Principle. Then, apply it to solve the following problem: How many positive integers ≤ 500 are divisible by any of the numbers 5, 6, or 9?	L3	CO-III	[14 M]
		SECTION-IV			
7	A	Solve the recurrence relation $an-3an-1+2$ $an-2=0$, $n > 3$.	L3	CO-IV	[7M]

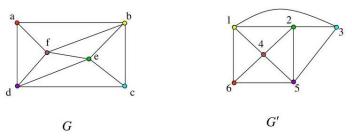
7 A Solve the recurrence relation $a_n - 3a_{n-1} + 2a_{n-2} = 0$, $n \ge 3$, L3 CO-IV [7M] $a_0 = 1$, $a_1 = 0$

B	Find the coefficient of x^{27} in the following function	L2	CO-IV	[7M]
	$(x^4+x^5+x^6+)^{5}$			

OR

Compute the number of ways in which the complete collection L3 CO-IV [14M] of letters that appear in MISSISSIPPI can be arranged in a row so that: (i) S appears at the beginning

(ii) There are no adjacent I's

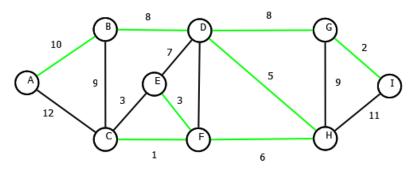

8

9

10

SECTION-V

Define Isomorphism with an example. Identify whether the L3 CO-V [14M] given graphs G and G^1 are isomorphic to each other or not.



OR

Find the MST (Minimal Spanning Tree) of the given graph L3 CO-V [14M] using

(a) Kruskal's and

(b) Prim's algorithms.
